Installation and operating instructions

Solar charge controller
MPPT 10 A / 20 A
1. **About these instructions**

These operating instructions are part of the product.
- Read these operating instructions carefully before use,
- keep them over the entire lifetime of the product,
- and pass them on to any future owner or user of this product.

1.1 Applicability

This manual describes the installation, function, operation and maintenance of the solar charge controller.

1.2 Users

These operating instructions are intended for end customers. A technical expert must be consulted in cases of uncertainty.

1.3 Description of symbols

Safety instructions are identified as follows:

⚠️ **SIGNAL WORD**

Type, source and consequences of the danger!
- Measures for avoiding danger

Instructions relating to the functional safety of the system are in **bold** type.

2. **Safety**

2.1 Proper usage

The solar charge controller may only be used in PV systems for charging and controlling lead-acid batteries with liquid or solid electrolyte in accordance with these operating instructions and the charging specifications of the battery manufacturer.

2.2 Improper usage

No energy source other than a solar generator may be connected to the solar charge controller. No mains devices, diesel generators or wind generators may be connected.

Do not connect any defective or damaged measuring equipment.
2.3 General safety instructions

- Follow the general and national safety and accident prevention regulations.
- Never alter or remove the factory plates and identification labels.
- Keep children away from PV systems.
- Never open the device.

2.4 Other risks

Danger of fire and explosion

- Do not use the solar charge controller in dusty environments, in the vicinity of solvents or where inflammable gases and vapours can occur.
- No open fires, flames or sparks in the vicinity of the batteries.
- Ensure that the room is adequately ventilated.
- Check the charging process regularly.
- Follow the charging instructions of the battery manufacturer.

Battery acid

- Acid splashes on skin or clothing should be immediately treated with soap suds and rinsed with plenty of water.
- If acid splashes into the eyes, immediately rinse with plenty of water. Seek medical advice.

2.5 Behaviour in the case of faults

Operating the solar charge controller is dangerous in the following situations:

- The solar charge controller does not appear to function at all.
- The solar charge controller or connected cables are visibly damaged.
- Emission of smoke or fluid penetration.
- When parts are loose.
- In these cases immediately remove the solar charge controller from the battery and solar module.
3. Description

3.1 Functions

The solar charge controller
• monitors the battery voltage,
• controls the charging process,
• controls the connection/disconnection of loads connected to the load output.

This optimises battery use and significantly extends its service life.

A battery charging algorithm protects the battery from harmful states. Activation of the three deep discharge functions (LVW, LVD and LVR) is dependent upon the battery voltage.

3.1.1 MPP tracking

This solar charge controller meets the latest technological standards since it is equipped with an optimal MPP tracking algorithm and thus can use at all times the maximum available output of the solar module.

3.1.2 What is MPP tracking (MPPT)?

MPPT stands for „Maximum Power Point Tracking“. This describes a process by means of which the solar module is always operated at the point of maximum possible power. Because the point the maximum power can vary depending on the operating mode and the local conditions, and because it changes in the course of the day, the term „tracking“ is used, i.e. the tracking of this point.

3.1.3 When should charge controllers with MPP tracking be used?

Charge controllers with MPP trackers can be used for a wider range of modules than those without MPPT. With an MPP tracker one is no longer dependent on the module voltage and string size. The module voltage can deviate significantly from the battery voltage.
3.1.4 Notes on choosing suitable solar modules

This solar charge controller has a maximum input voltage of 100 V. If this is exceeded even for a short time by the connected solar module, the solar charge controller will be damaged beyond repair and can never be used again. This will NOT constitute a guarantee claim, the charge controller must then be replaced at the customer’s expense.

The essential value for choosing a solar module is the open circuit voltage (U_{oc}). The open circuit voltage of the solar module is dependent on the ambient temperature. Information on the open circuit voltage of the solar module and on temperature dependence can be found in the data sheet of the solar module. The lower the ambient temperature, the higher the open circuit voltage of the solar module.

The open circuit voltage at -20°C may not exceed the maximum input voltage.

CAUTION

- If an open circuit voltage of more than 100 V is supplied to the connected solar module, the controller will be destroyed. When selecting the solar module, it is important to bear in mind that the open circuit voltage should never exceed 100 V over the entire working temperature range.

- When using solar modules with a maximum open circuit voltage of between 75 and 100 V (over the entire temperature range), all installation steps must be carried in accordance with protection class II.

3.2 Structure

The solar charge controller consists of the following components:

1. Info LED
2. 4 LEDs for displaying the state of charge (red, yellow, green 1 and green 2)
3. Terminal block for connecting the solar module
4. Terminal block for connecting the battery
5. Terminal block for connecting the loads
3.3 LED displays

<table>
<thead>
<tr>
<th>LED</th>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info LED</td>
<td>illuminates green</td>
<td>normal operation</td>
</tr>
<tr>
<td></td>
<td>flashes red</td>
<td>a fault exists (see "Faults and remedies")</td>
</tr>
<tr>
<td>Red LED</td>
<td>flashes quickly</td>
<td>battery empty when the battery continues to be discharged</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the deep-discharge deactivation is triggered</td>
</tr>
<tr>
<td></td>
<td>flashes</td>
<td>deep-discharge deactivation</td>
</tr>
<tr>
<td>Yellow LED</td>
<td>illuminates</td>
<td>battery weak</td>
</tr>
<tr>
<td></td>
<td>flashes</td>
<td>switch-on threshold after deep-discharge deactivation has not yet been reached</td>
</tr>
<tr>
<td>1. green LED</td>
<td>illuminates</td>
<td>battery good</td>
</tr>
<tr>
<td>2. green LED</td>
<td>illuminates</td>
<td>battery full</td>
</tr>
<tr>
<td></td>
<td>flashes quickly</td>
<td>battery full, charge regulation active, i.e. charging current reduced</td>
</tr>
</tbody>
</table>

4. Installation

⚠️ WARNING

Danger of explosion from sparking! Danger of electric shock!

Solar modules generate electricity under incident light. The full voltage is present, even when the incident light levels are low.

- The solar charge controller may only be connected to the local loads and the battery by trained personnel and in accordance with the applicable regulations.
- Follow the installation and operating instructions for all components of the PV system.
- Ensure that no cables are damaged.
- At a voltage of > 75 V, particularly with regard to module open circuit voltage (over the entire temperature range), the entire solar energy system must be installed with protection class II.
- Protect the solar modules from incident light during installation, e.g. cover them.
- Never touch uninsulated cable ends.
- Use only insulated tools.
- Ensure that all loads to be connected are switched off. If necessary, remove the fuse.
- Connections must always be made in the sequence described below (see 4.2.2).
4.1 Mounting the solar charge controller

4.1.1 Mounting location requirements
• Do not mount the solar charge controller outdoors or in wet rooms.
• Do not subject the solar charge controller to direct sunshine or other sources of heat.
• Protect the solar charge controller from dirt and moisture.
• Mount upright on the wall (concrete) on a non-flammable substrate.
• Maintain a minimum clearance of 10 cm below and around the device to ensure unhindered air circulation.
• Mount the solar charge controller as close as possible to the batteries (with a safety clearance of at least 30 cm).

4.1.2 Fastening the solar charge controller
• Mark the position of the solar charge controller fastening holes on the wall.
• Drill 4 Ø 6 mm holes and insert dowels.
• Fasten the solar charge controller to the wall with the cable openings facing downwards, using 4 oval head screws M4x40 (DIN 7996).

4.2 Connection

4.2.1 Preparing the wiring
The cross section of the connection cables must be suitable for the currents which occur.

<table>
<thead>
<tr>
<th>Module current</th>
<th>Battery current</th>
<th>Load current</th>
<th>Cross section</th>
<th>AWG</th>
<th>Isolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 A</td>
<td>20 A</td>
<td>10 A</td>
<td>10 mm²</td>
<td>8</td>
<td>85°C</td>
</tr>
</tbody>
</table>

The table above applies to the following cable lengths:
• 10 m solar module connection cable
• 2 m battery connection cable
• 5 m load connection cable
Consult a dealer if the specified cable lengths are inadequate.
An additional 30 A external fuse (not provided) must be connected to the battery connection cable, close to the battery pole.
The external fuse prevents dangerous situations due to cable short circuits.
4.2.2 Connection

⚠️ WARNING
Danger of explosion from sparking! Danger of electric shock!

- At a voltage of > 75 V, particularly with regard to module open circuit voltage (over the entire temperature range), the entire solar energy system must be installed with protection class II.

1st step: connect the battery

⚠️ CAUTION
- The device will be destroyed if the battery is connected with the wrong polarity.

- Label the battery connection cables as a plus cable (A+) and a minus cable (A–).
- Lay the battery cables in parallel between the solar charge controller and the battery.
- Connect the battery connection cable with the correct polarity to the middle pair of terminals on the solar charge controller (with the battery symbol).
- Connect battery connection cable A+ to the positive pole of the battery.
- Connect battery connection cable A– to the negative pole of the battery.
- If the connection polarity is correct, the info LED illuminates green.
- If necessary, remove any external fuse.
2nd step: connect the solar module

⚠️ CAUTION

- The connected modules may not exceed an open circuit voltage (VOC) of 100 V, even at extremely low temperatures.

- Ensure that the solar module is protected from incident light.
- Ensure that the solar module does not exceed the maximum permissible input current.
- Label the solar module connection cables as a plus cable (M+) and a minus cable (M–).
- Lay both solar module connection cables in parallel between the solar module and the solar charge controller.
- First connect the M+ solar module connection cable to the correct pole of the left pair of terminals on the solar charge controller (with the solar module symbol), then connect the M– cable.
- Remove the covering from the solar module.

3rd step: connect loads

⚠️ WARNING

Danger of explosion from sparking! Danger of electric shock!

- At a voltage of > 75 V, particularly with regard to module open circuit voltage (over the entire temperature range), the entire solar energy system must be installed with protection class II.

Notes

- Connect loads that must not be deactivated by the solar charge controller deep discharge protection, e.g. emergency lights or radio connection, directly to the battery.
- Loads with a higher current consumption than the device output can be directly connected to the battery.

However, the solar charge controller deep discharge protection will no longer intervene. Loads connected in this manner must also be separately fused. Loads of this type can also be reliably connected via an additional output relay (e.g. PA EV 200 A).

- Label the load connection cables as a plus cable (L+) and a minus cable (L–).
- Lay the load connection cables in parallel between the solar charge controller and the load.
First connect the L+ load cable to the correct pole of the right pair of terminals on the solar charge controller (with the lamp symbol), then connect the L– cable.

Replace the load fuse or switch on the load.

4th step: final work

Fasten all cables with strain relief in the direct vicinity of the solar charge controller (clearance of approx. 10 cm).

4.2.3 Grounding

Grounding of the controller and connected components in stand-alone systems is not necessary, not standard practice or may be prohibited by national regulations (e.g.: DIN 57100 Part 410: Prohibition of grounding protective low voltage circuits). The following grounding possibilities are available if required:

- Positive grounding: One or more of the negative controller terminals can be grounded.
- Positive grounding: Only one of the positive controller terminals may be grounded.

CAUTION

Simultaneous grounding of multiple positive controller terminals will result in malfunctions or damage to the charge controller.
4.2.4 Lightning protection

In systems subjected to an increased risk of overvoltage damage, we recommend installing additional lightning protection / overvoltage protection to reduce dropouts. Consult the technical manual for more detailed information.

5. Operation

The solar charge controller immediately begins operation once the battery is connected or the external fuse is inserted.

The display of the solar charge controller shows the current operating mode. User intervention or user settings are not required.

Protection functions

The following integrated protection functions of the solar charge controller ensure that the battery is handled as gently as possible.

The following protection functions are part of the basic function of the controller:

- overcharge protection
- deep discharge protection
- battery undervoltage protection
- solar module reverse current protection

The following installation faults do not destroy the controller. After correcting the fault, the device will continue to operate correctly:

- protection from solar module short circuits / incorrect solar module polarity
- protection from short circuits at the load output or excessive load current
- protection from solar module overcurrent
- protection from device overtemperature
- protection from overvoltage at the load output
- protection from the wrong connection sequence
6. Maintenance

The solar charge controller is maintenance-free. All components of the PV system must be checked at least annually, according to the specifications of the respective manufacturers.

- Ensure adequate ventilation of the cooling element.
- Check the cable strain relief.
- Check that all cable connections are secure.
- Tighten screws if necessary.
- Terminal corrosion

7. Faults and Remedies

<table>
<thead>
<tr>
<th>Fault</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>No display</td>
<td>• Battery voltage too low</td>
<td>▶ Pre-charge the battery</td>
</tr>
<tr>
<td></td>
<td>• The external fuse in the battery connection cable has blown.</td>
<td>▶ Replace the external fuse</td>
</tr>
<tr>
<td></td>
<td>• Battery is not connected</td>
<td>1. Unclamp all connections</td>
</tr>
<tr>
<td></td>
<td>• Battery is defective</td>
<td>2. Connect a (new) battery with the correct polarity</td>
</tr>
<tr>
<td></td>
<td>• Battery is connected with the wrong polarity</td>
<td>3. Reconnect the solar module and loads</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Device may be defective; Return device to specialist dealer</td>
</tr>
<tr>
<td>Info LED flashes red</td>
<td>• Charging interrupted due to excessive charging current</td>
<td>Charging automatically continues as soon as the charging current lies within the permissible range</td>
</tr>
<tr>
<td></td>
<td>• Optobus transfer faulty</td>
<td>Repeat programming</td>
</tr>
<tr>
<td></td>
<td>• Battery voltage too low</td>
<td>Pre-charge the battery</td>
</tr>
<tr>
<td></td>
<td>• Battery voltage too high</td>
<td>Check installation</td>
</tr>
<tr>
<td>Fault</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| Load cannot be operated or only for a short time + info LED flashes red | • Load output is switched off due to excessive load current
• Load output is switched off due to short circuit at load output
• Load output is switched off due to overheating of the solar charge controller | ✓ Reduce load current, if necessary switch off or disconnect loads
✓ Check loads
1. Disconnect loads
2. Correct the cause of the short circuit
3. Reconnect loads
The load output automatically switches on again once the solar charge controller has cooled down
✓ Improve the cooling air circulation
✓ Remove any other heat sources
✓ Check the conditions of use and the mounting location |
| Load cannot be operated + info LED flashes red + red battery LED flashes | • Load output is switched off due to too low battery voltage | The load output automatically switched on again as soon as the battery voltage lies within the permissible range
✓ Pre-charge the battery
✓ Equip loads directly connected to the battery with deep discharge protection
✓ Check the battery and replace if necessary |
<table>
<thead>
<tr>
<th>Fault</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load cannot be operated +</td>
<td>• Load output is switched off due to excessive battery voltage</td>
<td>The load output automatically switched on again as soon as the battery voltage lies within the permissible range</td>
</tr>
<tr>
<td>info LED flashes red</td>
<td>• External charging source is not voltage-limited</td>
<td>▶ Check the external charging source</td>
</tr>
<tr>
<td>+ 2. green LED flashes</td>
<td></td>
<td>▶ If necessary, switch off external charging sources</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▶ Charge Controller reset: Disconnect the load, disconnect the module and disconnect the battery. Then in reverse order Clamp (battery -> Module -> and finally the load)</td>
</tr>
<tr>
<td>Load cannot be operated +</td>
<td>• Defective load or installation error</td>
<td>▶ Connect load correctly</td>
</tr>
<tr>
<td>info LED illuminates green</td>
<td></td>
<td>▶ Replace load</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery is not charged</td>
<td>• Solar module not connected</td>
<td>▶ Connect the solar module</td>
</tr>
<tr>
<td></td>
<td>• Solar module connected with incorrect polarity</td>
<td>▶ Connect the solar module with the correct polarity</td>
</tr>
<tr>
<td></td>
<td>• Short circuit at solar module input</td>
<td>▶ Correct the cause of the short circuit</td>
</tr>
<tr>
<td></td>
<td>• Incorrect solar module voltage</td>
<td>▶ Use a solar module of the specified voltage</td>
</tr>
<tr>
<td></td>
<td>• Device overheated</td>
<td>▶ Make sure the device is well ventilated</td>
</tr>
<tr>
<td></td>
<td>• Solar module defective</td>
<td>▶ Replace the solar module</td>
</tr>
<tr>
<td>Battery display jumps quickly</td>
<td>• Large pulse current</td>
<td>▶ Tune the current consumption to match the battery capacity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▶ Replace the battery</td>
</tr>
<tr>
<td></td>
<td>• Battery is defective</td>
<td></td>
</tr>
</tbody>
</table>
Efficiency example:
8. Technical data

<table>
<thead>
<tr>
<th>Characterisation of the operating behaviour</th>
<th>MPPT 10 A</th>
<th>MPPT 20 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>System voltage</td>
<td>12 V (24 V)</td>
<td></td>
</tr>
<tr>
<td>Rated output</td>
<td>125 W (250 W)</td>
<td>250 W (500 W)</td>
</tr>
<tr>
<td>Max. efficiency</td>
<td>> 98 %</td>
<td></td>
</tr>
<tr>
<td>Own consumption</td>
<td>10 mA</td>
<td></td>
</tr>
<tr>
<td>DC input side</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPP voltage</td>
<td>15 V (30 V) (< U_{\text{module}} < 75 \text{ V})</td>
<td>15 V (30 V) (< U_{\text{module}} \ll 100 \text{ V})</td>
</tr>
<tr>
<td>Open circuit voltage solar module (at minimum operating temperature)</td>
<td>17 V ... 75 V (34 V ... 75 V)</td>
<td>17 V ... 100 V** (34 V .. 100 V)**</td>
</tr>
<tr>
<td>Module current</td>
<td>9 A</td>
<td>18 A</td>
</tr>
<tr>
<td>DC output side</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charging current</td>
<td>10 A</td>
<td>20 A</td>
</tr>
<tr>
<td>Load current</td>
<td>10 A</td>
<td></td>
</tr>
<tr>
<td>End-of-charge voltage*</td>
<td>13.9 V (27.8 V)*</td>
<td></td>
</tr>
<tr>
<td>Boost charge voltage*</td>
<td>14.4 V (28.8 V)*</td>
<td></td>
</tr>
<tr>
<td>Equalisation charging*</td>
<td>14.7 V (29.4 V)*</td>
<td></td>
</tr>
<tr>
<td>Reset voltage* (SOC / LVR)</td>
<td>> 50 % / 12.5 V (25.0 V)*</td>
<td></td>
</tr>
<tr>
<td>Deep discharge protection* (SOC / LVD)</td>
<td>< 30 % / 11.5 V (23.0 V)*</td>
<td></td>
</tr>
<tr>
<td>Application conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>-25 °C ... +40 °C</td>
<td></td>
</tr>
<tr>
<td>Equipment and design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminal clamps (fine-wire / single wire)</td>
<td>16 mm² / 25 mm² - AWG 6 / 4</td>
<td></td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP 32</td>
<td></td>
</tr>
<tr>
<td>Dimensions (X x Y x Z)</td>
<td>187 x 153 x 68 mm</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 900 g</td>
<td></td>
</tr>
</tbody>
</table>

* see the chapter “Options” page 13

Technical data at 25 °C / 77 °F

** CAUTION

- If an open circuit voltage of more than 100 V is supplied to the connected solar module, the controller will be destroyed. When selecting the solar module, it is important to bear in mind that the open circuit voltage should never exceed 100 V over the entire working temperature range.

- When using solar modules with a maximum open circuit voltage of between 60 and 100 V (over the entire temperature range), all installation steps must be carried in accordance with protection class II.
NOTE:
- Technical data that varies from the above is given on a device label. Subject to change without notice.