Installation and operating instructions

Solar charge controller
25 A / 40 A
## Contents

1. About this manual ................................................................. 3  
   1.1 Applicability ................................................................. 3  
   1.2 Users ........................................................................... 3  
   1.3. Description of symbols ................................................. 3  
2. Safety .................................................................................... 3  
   2.1 Proper usage ............................................................... 3  
   2.2 Improper usage ............................................................ 3  
   2.3 General safety instructions .......................................... 3  
   2.4 Other risks .................................................................. 3  
   2.5 Fault behaviour ............................................................ 4  
3. Description ........................................................................... 4  
   3.1 Functions .................................................................... 4  
   3.2 Construction ............................................................... 4  
   3.3 LED displays ............................................................... 4  
4. Installation ........................................................................... 5  
   4.1 Mounting the solar charge controller ......................... 5  
      4.1.1 Mounting location requirements ......................... 5  
      4.1.2 Fastening the solar charge controller .................. 5  
   4.2 Connection .................................................................. 5  
      4.2.1 Preparing the wiring ............................................. 5  
      4.2.2 Connection .......................................................... 6  
      4.2.3 Grounding ........................................................... 7  
      4.2.4 Lightning protection ............................................. 7  
5. Operation .............................................................................. 8  
6. Maintenance ......................................................................... 8  
7. Faults and remedies .............................................................. 8  
8. Technical data ..................................................................... 10  
9. Legal guarantee  ...................................................................
1. About this manual
These operating instructions are part of the product.

- Read these operating instructions carefully before use,
- keep them over the entire lifetime of the product,
- and pass them on to any future owner or user of this product.

1.1 Applicability
This manual describes the installation, function, operation and maintenance of the solar charge controller.

1.2 Users
These operating instructions are intended for end customers. A technical expert must be consulted in cases of uncertainty.

1.3. Description of symbols
Safety instructions are identified as follows:

⚠️ SIGNAL WORD
Type, source and consequences of the danger!
- Measures for avoiding danger

Instructions relating to the functional safety of the system are in bold type.

2. Safety

2.1 Proper usage
The solar charge controller may only be used in PV systems for charging and controlling lead-acid batteries in accordance with this operating manual and the charging specifications of the battery manufacturer.

2.2 Improper usage
No energy source other than a solar generator may be connected to the solar charge controller. No mains devices, diesel generators or wind generators may be connected. Do not connect any defective or damaged measuring equipment.

2.3 General safety instructions
- Follow the general and national safety and accident prevention regulations.
- Never alter or remove the factory plates and identification labels.
- Keep children away from PV systems.
- Never open the device.

2.4 Other risks
Danger of fire and explosion
- Do not use the solar charge controller in dusty environments, in the vicinity of solvents or where inflammable gases and vapours can occur.
- No open fires, flames or sparks in the vicinity of the batteries.
- Ensure that the room is adequately ventilated.
- Check the charging process regularly.
- Follow the charging instructions of the battery manufacturer.

Battery acid
- Acid splashes on skin or clothing should be immediately treated with soap suds and rinsed with plenty of water.
- If acid splashes into the eyes, immediately rinse with plenty of water. Seek medical advice.
2.5 Fault behaviour
Operating the solar charge controller is dangerous in the following situations:
• The solar charge controller does not appear to function at all.
• The solar charge controller or connected cables are visibly damaged.
• Emission of smoke or fluid penetration.
• When parts are loose.
  ▶ In these cases immediately remove the solar charge controller from the solar modules and battery.

3. Description

3.1 Functions
The solar charge controller
• monitors the state of charge of the battery bank,
• controls the charging process,
• controls the connection/disconnection of loads.
This optimises battery use and significantly extends its service life.
A battery charging algorithm protects the battery from harmful states. Activation of the three deep discharge functions (LVW, LVD and LVR) is dependent upon the state of charge. The switching thresholds lie within the corresponding voltage window in accordance with the discharge or charging current.

3.2 Construction

3.3 LED displays

<table>
<thead>
<tr>
<th>LED</th>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info LED</td>
<td>illuminates green</td>
<td>normal operation</td>
</tr>
<tr>
<td></td>
<td>flashes red</td>
<td>a fault exists (see “Faults and remedies”)</td>
</tr>
<tr>
<td>Red LED</td>
<td>flashing quickly</td>
<td>battery empty, state of charge &lt; 40 % when the battery continues to be discharged the deep-discharge deactivation is triggered</td>
</tr>
<tr>
<td></td>
<td>flashing</td>
<td>deep-discharge deactivation, state of charge &lt; 30 %</td>
</tr>
<tr>
<td>Yellow LED</td>
<td>illuminates</td>
<td>battery weak, state of charge &lt; 50 %</td>
</tr>
<tr>
<td></td>
<td>flashing</td>
<td>switch-on threshold after deep-discharge deactivation has not yet been reached, state of charge is 40 % to 50 %</td>
</tr>
<tr>
<td>1. green LED</td>
<td>illuminates</td>
<td>battery good, state of charge &gt; 50 %</td>
</tr>
<tr>
<td>2. green LED</td>
<td>illuminates</td>
<td>battery full, state of charge &gt; 80 %</td>
</tr>
<tr>
<td></td>
<td>flashing quickly</td>
<td>battery full, charge regulation active, i.e. charging current reduced</td>
</tr>
</tbody>
</table>
4. Installation

WARNING

Danger of explosion from sparking! Danger of electric shock!

- The solar charge controller may only be connected to the local loads and the battery by trained personnel and in accordance with the applicable regulations.
- Follow the installation and operating instructions for all components of the PV system.
- Ensure that no cables are damaged.

4.1 Mounting the solar charge controller

4.1.1 Mounting location requirements

- Do not mount the solar charge controller outdoors or in wet rooms.
- Do not subject the solar charge controller to direct sunshine or other sources of heat.
- Protect the solar charge controller from dirt and moisture.
- Mount upright on the wall (concrete) on a non-flammable substrate.
- Maintain a minimum clearance of 10 cm below and around the device to ensure unhindered air circulation.
- Mount the solar charge controller as close as possible to the batteries (with a safety clearance of at least 50 cm).

4.1.2 Fastening the solar charge controller

- Mark the position of the solar charge controller fastening holes on the wall.
- Drill 4 Ø 6 mm holes and insert dowels.
- Fasten the solar charge controller to the wall with the cable openings facing downwards, using 4 oval head screws M4x40 (DIN 7996).

4.2 Connection

4.2.1 Preparing the wiring

The cross section of the connection cable depends on the power output of the solar charge controller.

<table>
<thead>
<tr>
<th>Controller type</th>
<th>Load/module current</th>
<th>Cross-section</th>
<th>AWG</th>
<th>Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 A</td>
<td>10 A</td>
<td>6 mm²</td>
<td>10</td>
<td>85 °C</td>
</tr>
<tr>
<td>15 A</td>
<td>15 A</td>
<td>10 mm²</td>
<td>8</td>
<td>85 °C</td>
</tr>
<tr>
<td>20 A</td>
<td>20 A</td>
<td>10 mm²</td>
<td>8</td>
<td>85 °C</td>
</tr>
<tr>
<td>30 A</td>
<td>30 A</td>
<td>16 mm²</td>
<td>6</td>
<td>85 °C</td>
</tr>
</tbody>
</table>

The table above applies to the following cable lengths:

- 10 m solar module connection cable
- 2 m battery connection cable
- 5 m load connection cable

Consult a dealer if the specified cable lengths are inadequate.

An additional external fuse (not provided) must be connected to the battery connection cable, close to the battery pole.

The external fuse prevents cable short circuits. A 40 A fuse can be used for all controller types.
4.2.2 Connection

**WARNING**

_Danger of explosion from sparking! Danger of electric shock!_

Solar modules generate electricity under incident light. The full voltage is present, even when the incident light levels are low.

- Protect the solar modules from incident light during installation, e.g. cover them.
- Never touch uninsulated cable ends.
- Use only insulated tools.
- Ensure that all loads to be connected are switched off. If necessary, remove the fuse.
- Connections must always be made in the sequence described below.

---

**Connection sequence**

1. battery  
2. solar module  
3. loads

---

**1st step: Connect the battery**

- Label the battery connection cables as a plus cable (A+) and a minus cable (A–).
- Lay the battery cables in parallel between the solar charge controller and the battery.
- Connect the battery connection cable with the correct polarity to the middle pair of terminals on the solar charge controller (with the battery symbol).
- If necessary, remove any external fuse.
- Connect battery connection cable A+ to the positive pole of the battery.
- Connect battery connection cable A– to the negative pole of the battery.
- Replace the external fuse in the battery connection cable.
- If the connection polarity is correct, the info LED illuminates green.

---

**2nd step: Connect the solar module**

- Ensure that the solar module is protected from incident light.
- Ensure that the solar module does not exceed the max. permissible input current and the max. permissible input voltage in the entire operating temperature range.
- Label the solar module connection cables as a plus cable (M+) and a minus cable (M–).
- Lay both solar module connection cables in parallel between the solar module and the solar charge controller.
- First connect the M+ solar module connection cable to the correct pole of the left pair of terminals on the solar charge controller (with the solar module symbol), then connect the M– cable.
- Remove the covering from the solar module.
3rd step: Connect loads

Notes

• Connect loads that must not be deactivated by the solar charge controller deep discharge protection, e.g. emergency lights or radio connection, directly to the battery.

• Loads with a higher current consumption than the device output can be directly connected to the battery. However, the solar charge controller deep discharge protection will no longer intervene. Loads connected in this manner must also be separately fused. Inverters must be connected directly to the battery as a matter of principle.

► Label the load connection cables as a plus cable (L+) and a minus cable (L–).

► Lay the load connection cables in parallel between the solar charge controller and the load.

► First connect the L+ load cable to the correct pole of the right pair of terminals on the solar charge controller (with the lamp symbol), then connect the L– cable.

► Replace the load fuse or switch on the load.

► Connect USB consumers to the USB charging socket.

4th step: Final work

► Fasten all cables with strain relief in the direct vicinity of the solar charge controller (clearance of approx. 10 cm).

4.2.3 Grounding

When constructing a stand-alone solar energy system, from a technical point of view the controller does not necessarily need to be grounded. However, be sure to always observe the applicable respective national regulations regarding grounding. All positive connections can be grounded but with negative grounding only one connection can be grounded.

Caution

Danger of damage to the controller. Make sure that no common connection exists for the Module Minus, Battery Minus and Load Minus connections, e.g. via a ground connection.

4.2.4 Lightning protection

In systems subjected to an increased risk of overvoltage damage, we recommend installing additional lightning protection / overvoltage protection to reduce dropouts.
5. Operation

The solar charge controller immediately begins operation once the battery is connected or the external fuse is inserted. The displays of the solar charge controller show the current operating mode. User intervention or user settings are not required.

Protection functions

The following integrated protection functions of the solar charge controller ensure that the battery is handled as gently as possible.

The following protection functions are part of the basic function of the controller:

- Overcharge protection
- Deep discharge protection
- Battery undervoltage protection
- Solar module reverse current protection

The following simple installation errors do not result in the destruction of the controller. After correcting the fault, the device will continue to operate correctly:

- Protection from solar module short circuits / protection against wrong solar module polarity up to an open-circuit module voltage Uoc of < 35 V.
- Protection from short circuits at the load output or excessive load current
- Protection from battery connection with incorrect polarity
- Protection from solar module overcurrent
- Protection from device overtemperature
- Protection from overvoltage at the load output
- Protection from the wrong connection sequence

6. Maintenance

The solar charge controller is maintenance-free.

All components of the PV system must be checked at least annually, according to the specifications of the respective manufacturers.

» Ensure adequate ventilation of the cooling element.
» Check the cable strain relief.
» Check that all cable connections are secure.
» Tighten screws if necessary.
» Terminal corrosion

7. Faults and remedies

<table>
<thead>
<tr>
<th>Fault</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>No display</td>
<td>• battery voltage too low</td>
<td>▶ pre-charge the battery</td>
</tr>
<tr>
<td></td>
<td>• the external fuse in the battery connection cable has blown.</td>
<td>▶ replace the external fuse</td>
</tr>
<tr>
<td></td>
<td>• battery is not connected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• battery is connected with the wrong polarity</td>
<td>1. unclamp all connections</td>
</tr>
<tr>
<td></td>
<td>• battery is defective</td>
<td>2. connect a (new) battery with the correct polarity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. reconnect the solar module and loads</td>
</tr>
<tr>
<td>Info LED flashes red</td>
<td>• charging interrupted due to excessive charging current</td>
<td>charging automatically continues as soon as the charging current lies within the permissible range</td>
</tr>
<tr>
<td>Fault</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>Load cannot be operated or only for a short time + info LED flashes red</td>
<td>• load output is switched off due to excessive load current</td>
<td>• reduce load current, if necessary switch off or disconnect loads • check loads</td>
</tr>
<tr>
<td></td>
<td>• load output is switched off due to short circuit at load output</td>
<td>1. disconnect loads 2. correct the cause of the short circuit 3. reconnect loads</td>
</tr>
<tr>
<td></td>
<td>• load output is switched off due to overheating of the solar charge controller</td>
<td>the load output automatically switches on again once the solar charge controller has cooled down • improve the cooling air circulation • remove any other heat sources • check the conditions of use and the mounting location</td>
</tr>
<tr>
<td>Load cannot be operated + info LED flashes red + red battery LED flashes</td>
<td>• load output is switched off due to too low battery voltage</td>
<td>the load output automatically switched on again as soon as the battery voltage lies within the permissible range • pre-charge the battery • equip loads directly connected to the battery with deep discharge protection • check the battery and replace if necessary</td>
</tr>
<tr>
<td></td>
<td>• incorrect grounding</td>
<td>• check the grounding</td>
</tr>
<tr>
<td></td>
<td>• external charging source is not voltage-limited</td>
<td>• check the external charging source • if necessary, switch off external charging sources</td>
</tr>
<tr>
<td>Load cannot be operated + info LED illuminates green</td>
<td>• defective load or installation error</td>
<td>• connect load correctly • replace load</td>
</tr>
<tr>
<td>Battery is not charged</td>
<td>• solar module not connected</td>
<td>• connect the solar module</td>
</tr>
<tr>
<td></td>
<td>• solar module connected with incorrect polarity</td>
<td>• connect the solar module with the correct polarity</td>
</tr>
<tr>
<td></td>
<td>• short circuit at solar module input</td>
<td>• correct the cause of the short circuit</td>
</tr>
<tr>
<td></td>
<td>• incorrect solar module voltage</td>
<td>• use a solar module of the specified voltage</td>
</tr>
<tr>
<td></td>
<td>• solar module defective</td>
<td>• replace the solar module</td>
</tr>
<tr>
<td>Battery display jumps quickly</td>
<td>• large pulse current</td>
<td>• tune the current consumption to match the battery capacity</td>
</tr>
<tr>
<td></td>
<td>• battery is defective</td>
<td>• replace the battery</td>
</tr>
</tbody>
</table>
8. Technical data

<table>
<thead>
<tr>
<th>Solar charge controller</th>
<th>25 A</th>
<th>40 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. module input short circuit current at 25 °C</td>
<td>25 A</td>
<td>40 A</td>
</tr>
<tr>
<td>Max. load output current at 25 °C</td>
<td>25 A</td>
<td>40 A</td>
</tr>
<tr>
<td>USB charging socket max. current at 25 °C</td>
<td>1.5 A</td>
<td></td>
</tr>
<tr>
<td>USB charging socket voltage</td>
<td>5.2 V</td>
<td></td>
</tr>
<tr>
<td>Terminal size (fine/single wire)</td>
<td>16/25 mm² = 6/4 AWG</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>345 g</td>
<td></td>
</tr>
<tr>
<td>Dimensions l x w x h</td>
<td>187 x 97 x 45 mm</td>
<td></td>
</tr>
<tr>
<td>Enclosure protection class</td>
<td>IP 31</td>
<td></td>
</tr>
<tr>
<td>System voltage</td>
<td>12 V / 24 V</td>
<td></td>
</tr>
<tr>
<td>Ambient temperature allowed</td>
<td>–25 °C ... +50 °C</td>
<td></td>
</tr>
<tr>
<td>Max. voltage of Solar collector</td>
<td>47 V DC</td>
<td></td>
</tr>
<tr>
<td>Protection from incorrect solar module polarity</td>
<td>up to Uoc &lt;35 V</td>
<td></td>
</tr>
<tr>
<td>Temperature compensation</td>
<td>–4 mV/K/Zelle</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>12-V-system</th>
<th>24-V-system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permissible battery voltage range *</td>
<td>9 - 17 V</td>
<td>17,1 - 34 V</td>
</tr>
<tr>
<td>Deep discharge warning (SOC/LVW)</td>
<td>&lt; 40 % / 11,7 V ~ 12,3 V</td>
<td>&lt; 40 % / 23,4 V ~ 24,6 V</td>
</tr>
<tr>
<td>Deep discharge protection (SOC/LVD)</td>
<td>&lt; 30 % / 11,2 V ~ 11,6 V</td>
<td>&lt; 30 % / 22,1 V ~ 23,2 V</td>
</tr>
<tr>
<td>Reconnection set point (SOC/LVR)</td>
<td>&gt; 50 % / 12,4 V ~ 12,7 V</td>
<td>&gt; 50 % / 24,8 V ~ 25,4 V</td>
</tr>
<tr>
<td>End of charge voltage (float)</td>
<td>13,9 V</td>
<td>27,8 V</td>
</tr>
<tr>
<td>Boost charge voltage (boost)</td>
<td>14,4 V</td>
<td>28,8 V</td>
</tr>
<tr>
<td>Equalisation charge (equal)</td>
<td>14,7 V</td>
<td>29,4 V</td>
</tr>
</tbody>
</table>

Technical data at 25 °C / 77 °F

NOTE:
Technical data that varies from the above is given on a device label. Subject to change without notice.

*If the battery voltage is less than 9 V, the controller switches off and cannot recharge the battery itself, even if sufficient power is available from the module.